

Application News

No. AD-0191

Biopharma / Nexera Bio UHPLC / LCMS-9030

N-glycan Profiling of monoclonal Antibody (mAb) on Nexera Bio UHPLC Coupled with Fluorescence Detector and Q-TOF Mass Spectrometer

Yonghai Lu and Zhaoqi Zhan Application Development & Support Centre, Shimadzu (Asia Pacific), Singapore

□ Introduction

N-linked glycosylation on Asn residue with consensus sequence Asn-X-Ser/Thr (where X is any amino acid except Pro) plays a critical role in stability, bioactivity, and immunogenicity of monoclonal antibodies (mAbs). The N-glycan moieties of therapeutic mAbs, especially biosimilar products, must be adequately and routinely characterized to ensure product quality. In this report, we established a robust, sensitive, and reproducible analytical platform that contains a Nexera Bio UHPLC system, a fluorescence detector (RF-20A), and a Q-TOF mass spectrometer (LCMS-9030) for N-glycan profiling of bevacizumab biosimilar. N-glycans were released from bevacizumab biosimilar with PNGase F, labeled with 2-aminobenzamide (2-AB),subsequently detected via RF-20A and LCMS-9030. LCMS-9030 was applied for peak assignment using an accurate mass of corresponding N-glycans, while peak areas from RF-20A were used for N-glycan quantitation.

Experimental

Protein Solubilization: 1 mg/mL of bevacizumab biosimilar solution was prepared in Tris buffer. A 100 μ L aliquot was loaded into a 10 kDa molecular weight cut-off (MWCO) to remove salts from the sample buffer. The recovered sample (~20 μ L) was diluted to 100 μ L with 25 mM ammonium bicarbonate solution.

Reduction and Alkylation: 2 μ L dithiothreitol (DTT, 1M) solution was added to reduce disulfide bonds. The sample was incubated at room temperature for 60 min. Then, 4 μ L iodoacetamide (IAA, 1M) solution was added for alkylation, and incubated in the dark for 60 min at room temperature.

Deglycosylation: 2 μ L PNFase F (1000U) was added to release N-glycans from bevacizumab biosimilar, and incubated at 37 °C overnight.

Extraction of N-glycans: N-glycans were extracted using LudgerClean™ EB10 cartridge by eluting with 4 × 200 µL of 50% acetonitrile with 0.1% trifluoroacetic acid. For details see the LudgerClean™ EB10 cleanup protocol [1]. The obtained sample was dried down by

a centrifugal evaporator and reconstituted in 50 μL of acetonitrile.

2-AB Labeling: 10 µL 2-AB/acetic acid/ DMSO/ sodium cyanoborohydrate mixture with defined composition was used for labeling [2].

Purification of 2-AB Labeled N-glycans: LudgerCleanTM S cartridge was applied to remove the excess labeling reagent. For details see the LudgerCleanTM S cleanup protocol [3]. The obtained sample was dried down by a freeze dryer and reconstituted in 50 μ L of 50% acetonitrile for LC/Fluorescence/MS analysis (**Table 1**).

Table 1. LC/Fluorescence/MS conditions

LC conditions

LC system: Shimadzu Nexera Bio UHPLC Column: HALO®Glycan, 2.7 μ m, 150 \times 2.1 mm

Column temperature: 60 °C Flow rate: 0.4 mL/min

Mobile phase A: 50 mM ammonium formate

Mobile phase B: Acetonitrile

Gradient program: 0 min, 78% B, 50min, 55% B, 51 min,

20% B, 56 min, 20% B, 57 min, 78% B.

Injection volume: 5 µL

Fluorescence conditions

Fluorescence detector: Shimadzu RF-20A

Excitation: 330 mm
Emission: 420 mm
Data rate: 1 pts/s
Gain: 1

MS conditions

MS system: Shimadzu LCMS-9030 (QTOF)

Interface: Heated ESI (+)

Interface voltage: 4 kV
Interface temperature: 300 °C
Nebulizing gas: N2, 3 L/min
Heating gas flow: Zero air, 10L/min

DL temperature: 250 °C Drying gas flow: N2, 10 L/min Heat block temperature: 400 °C MS mode: MS scan Mass range: 500 - 2500 m/z MS/MS scan MS mode: $50 \pm 17 \text{ V}$ Collision Energies: Mass range: 100 - 2500 m/z

□ Results and Discussion

A. UHPLC/RF injection-to-injection reproducibility

The purpose of UHPLC/RF analysis is to relatively quantify N-glycans. Injection-to-injection variability of UHPLC/RF system was evaluated as shown in **Figure 1**. Variations in peak area (**Table 2**) and retention time (**Table 3**) of three injections of the sample were less than 2% RSD for all peaks.

B. Characterization of N-glycans using LCMS-9030

In total, we characterized nine 2-AB labeled N-glycans from bevacizumab biosimilar, including Man3, G0F-2GN, G0-GN, G0F-GN, G0, Man5, G0F, G1Fa, and G1Fb (**Figure 2**). Proposed structures for the 2-AB labeled N-glycans are shown in **Figure 3**. **Table 4** shows accurate mass data of LCMS-9030. MS/MS spectra of N-glycans are shown in **Figure 4**. Accurate mass combined with MS2 patterns provide high confidence in identification of N-glycans.

C. Relative quantitation of N-glycans

Figure 5 shows the relative abundance of N-glycans of bevacizumab biosimilar. As a result, G0F was found to be the most abundant N-glycan that makes up 87.23% of the total N-glycans from bevacizumab biosimilar.

Table 2. Injection-to-injection repeatability of peak area (n = 3) of N-glycans from bevacizumab biosimilar

Peak #	Peak area	Std. Dev.	RSD (%)
Peak 1	18049	187	1.033
Peak 2	87783	993	1.131
Peak 3	101112	1082	1.070
Peak 4	505621	5588	1.105
Peak 5	308057	4351	1.412
Peak 6	559385	8982	1.606
Peak 7	23212699	260200	1.121
Peak 8	1117630	17295	1.547
Peak 9	701334	5500	0.784

Table 3. Injection-to-injection repeatability of retention time (n = 3) of N-glycans from bevacizumab biosimilar

Peak #	Average (min)	Std. Dev. (min)	RSD (%)
Peak 1	5.725	0.008	0.140
Peak 2	6.994	0.011	0.158
Peak 3	7.939	0.011	0.139
Peak 4	9.393	0.012	0.129
Peak 5	10.397	0.013	0.122
Peak 6	11.025	0.015	0.134
Peak 7	11.896	0.013	0.112
Peak 8	14.593	0.014	0.098
Peak 9	14.798	0.015	0.100

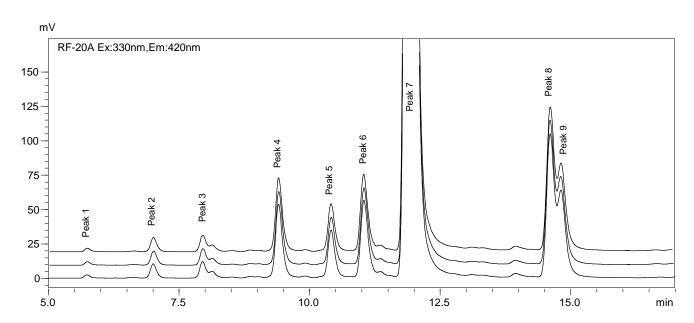


Figure 1. UHPLC-RF chromatograms of triplicate injections of 2-AB labelled N-glycans released from the same bevacizumab biosimilar product. It shows perfect alignment of chromatograms. The peak area and retention time variations were less than 2% RSD.

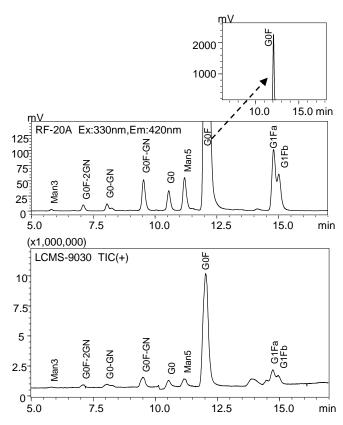


Figure 2. UHPLC/Fluorescence/MS analysis of 2-AB labeled N-glycans of bevacizumab biosimilar. Top chromatogram is fluorescence chromatogram; bottom is MS chromatogram.

Conclusions

- ✓ LCMS-9030 provides high sensitivity analysis of N-glycans with high accurate mass (< 2 ppm).
- ✓ The stability and repeatability of this analytical system is satisfactory (RSD < 2%).

In this report, we have demonstrated that the system comprising of Nexera Bio UHPLC coupled with RF-20A fluorescence detector and LCMS-9030 (Q-TOF) mass spectrometer is robust and reliable for N-glycan profiling and quantitation of bevacizumab biosimilar products. The injection-to-injection repeatability tests in peak area, retention time, and mass accuracy are satisfactory.

The demonstrated performance and features of both Nexera Bio UHPLC and LCMS-9030 (Q-TOF) signifies their high practicability for separation and assignment of N-glycans of antibody and biosimilar products and may become a tool of choice for biopharmaceutical mAb characterization.

□ Reference

- https://www.ludger.com/docs/products/lc/eb/ludger-lc-eb10-ax-guide.pdf
- Keser T, Pavić T, Lauc G, Gornik O. Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis. Front Chem 2018 6:324.
- https://www.ludger.com/docs/products/lc/s/ludger-lc-s-axguide.pdf

Table 4. Mass accuracy of LCMS-9030 for N-glycan analysis

2-AB N-glycans	Accurate mass (m/z)	Exact mass (m/z)	Mass error (ppm)
Man3	1031.4033	1031.4038	-0.48
G0F-2GN	1177.4636	1177.4617	1.61
G0-GN	1234.4830	1234.4832	-0.16
G0F-GN	1380.5404	1380.5411	-0.51
G0	1437.5638	1437.5625	0.90
Man5	1355.5083	1355.5095	-0.89
G0F	1583.6195	1583.6205	-0.63
G1Fa	1745.6724	1745.6733	-0.52
G1Fb	1745.6724	1745.6733	-0.52

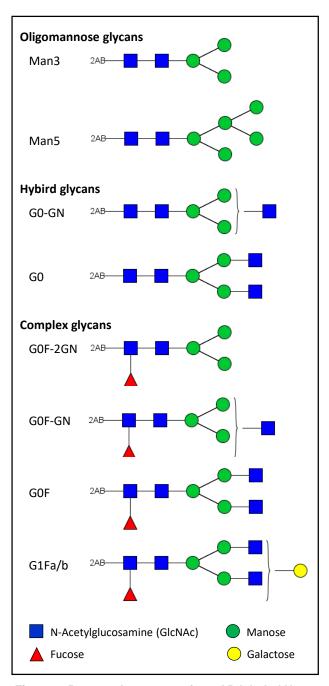


Figure 3. Proposed structures for 2-AB labeled Nglycans from bevacizumab biosimilar. GN = GlcNAc

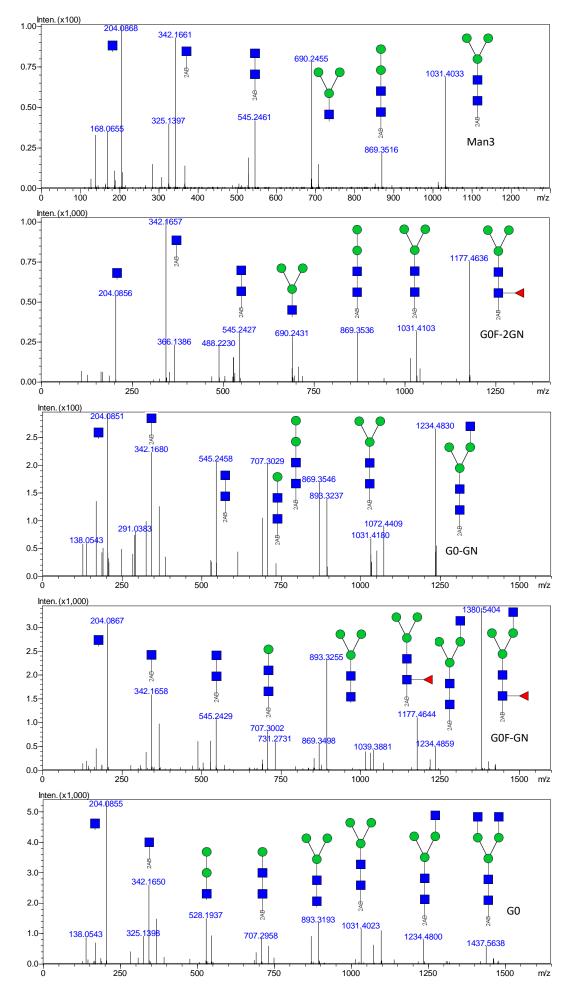


Figure 4. MS/MS spectra of 2-AB labeled N-glycans obtained by LCMS-9030 in positive ion mode.

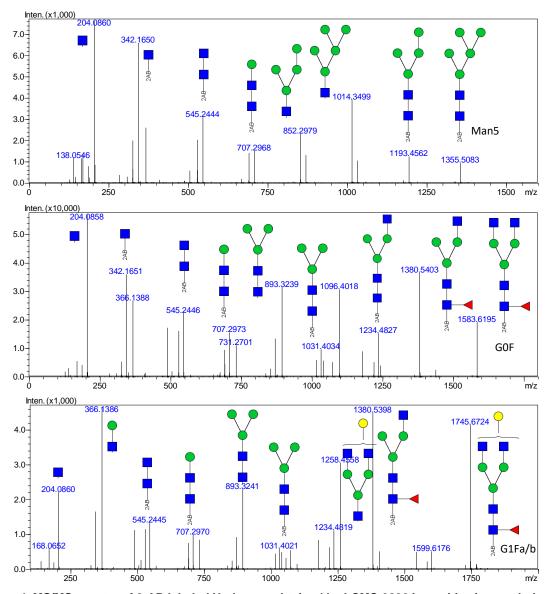


Figure 4. MS/MS spectra of 2-AB labeled N-glycans obtained by LCMS-9030 in positive ion mode (continued).

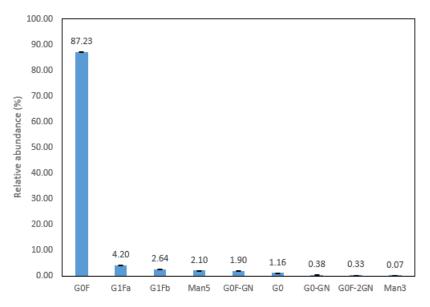


Figure 5. Relative abundance of 2-AB labeled N-glycans from bevacizumab biosimilar. Each relative abundance value has error bars based on triplicate analyses.

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic purposes.

Contents and/or instrumentations in this application may not available in some countries under each regulation.

Please contact the local representatives in details.

SHIMADZU (Asia Pacific) Pte. Ltd, www.shimadzu.com.sg

Copyright © 2019 SHIMADZU group. All rights reserved.